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Instability and breaking of a solitary wave 
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The result of a linear stability calculation of solitary waves which propagate steadily 
along the free surface of a liquid layer of constant depth is examined numerically by 
employing a time-stepping scheme based on a boundary-integral method. The initial 
growth rate that is found for sufficiently small perturbations agrees well with the 
growth rate expected from the linear stability calculation. In calculating the later 
‘nonlinear ’ stage of the instability, it is found that two distinct types of long-time 
evolution are possible. These depend only on the sign of the unstable normal-mode 
perturbatioli that is superimposed initially on the steady wave. The growth of the 
perturbation ultimately leads to breaking for one sign. Unexpectedly, for the 
opposite sign, there is a monotonic decrease in the total height of the wave. In this 
latter case there is a smooth evolution to a stable solitary wave of lesser amplitude 
but very nearly the same energy. 

1. Introduction 
The linear stability problem for a solitary wave with an arbitrary amplitude which 

propagates along the free surface of a liquid layer of constant depth was investigated 
by Tanaka (1986). His results show that for a solitary wave with an amplitude less 
than a, the only normal-mode perturbation is the trivial one corresponding to a pure 
phase shift. Note that the phase speed and most of the integral properties of the 
steady solitary wave such as the total energy and mass do not vary monotonically 
with amplitude. The amplitude/depth ratio at which the total energy is a maximum 
is here denoted by a,. On the other hand, for solitary waves of amplitude larger than 
a,, Tanaka showed that there are at least two non-trivial normal modes, one growing 
and one decaying. He was also able to calculate the growth-rate eigenvalues and the 
eigenfunctions of these modes. 

Tanaka found the critical amplitude at which the steady solitary wave loses its 
stability difficult to locate accurately with his numerical methods for solving the 
linearized stability problem. However, he argued that the critical amplitude is 
precisely the amplitude of energy maximum, a, and his results certainly did not 
indicate otherwise. This is also consistent with previous knowledge about 
‘superharmonic ’ instabilities of periodic waves on deep water (Tanaka 1983 ; 
Longuet-Higgins 1984 ; Tanaka 1985 ; Saffman 1985). More recently this coincidence 
of critical amplitude and amplitude of energy maximum was confirmed analytically 
by Zufiria & Saffman (1986), not only for the case of solitary waves but also for 
periodic waves on any finite depth by using Zakharov’s Hamiltonian formulation of 
water waves. 
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However, all of this work is based on a linear theory of hydrodynamic instability 
with the assumption that the perturbation is infinitesimally small compared with the 
basic steady wave. It does not give any information about ‘nonlinear’ (larger 
amplitude) growth of the instability ; for example, one might ask if the instability 
leads eventually to breaking. In order to address this problem, the very efficient 
time-stepping method, recently developed by Dold & Peregrine (1986), has been used 
to calculate the long-time evolution of the instability. We have concentrated 
particularly on a solitary wave with the amplitude-to-depth ratio a = 0.80374 which 
is well above the energy-maximum level a, (= 0.78066). 

Section 2 briefly describes the boundary-integral method used for the time 
integration and the method of calculating the initial solitary wave. A detailed 
account of the boundary-integral method is in preparation. The linear stage of the 
instability is investigated in $3 where the initial growth rates of sufficiently small 
perturbations are compared with the expected growth rate from the linear stability 
calculation. Section 4 describes the nonlinear stage of the instability for the growing 
mode. Although a change of sign of the initial normal-mode perturbation to the basic 
steady solution makes no difference to the linear stability analysis, this change of 
sign is shown to lead to completely different results. In one case the growth of the 
perturbation makes the wave profile progressively steepen, until it leads to breaking 
on a small scale around the crest. In the other case, with the sign of the initial 
perturbation reversed, the wave profile becomes progressively less steep as the 
perturbation grows. The height of the wave steadily decreases, and no breaking 
occurs. Instead the wave evolves into a lower-amplitude solitary wave, and two long 
small-amplitude waves, one of which propagates in the same direction as the solitary 
wave, but more slowly, while the other propagates off in the opposite direction. The 
approach to this final solitary-wave is found to be exponential which, superficially, 
appears to contradict the finding from linear stability analysis that this wave is 
stable ; here a consistent description is given. A summary of the results and a brief 
discussion appears in $5. 

2. Method of calculation 
2.1. Tirne-dependent motion 

For two-dimensional, irrotational motion of an incompressible fluid, the velocity 
field u(x, y, t )  can be expressed as the gradient of a velocity potential $(x, y, t )  which 
satisfies Laplace’s equation, 

(2.1) 

throughout the fluid. As a result, given values of $ on a surface surrounding the fluid, 
all values of $ within the fluid are uniquely determined. The problem of solving for 
the motion of a body of fluid can therefore be reduced to that of tracing the evolution 
of the shape of its boundary together with the velocity potential along the 
boundary. 

The fluid boundary will be considered to consist of a flat impermeable bottom at 
y = --h and a free surface which may be expressed parametrically as r = R(fJ. (The 
nature of will be made more specific later.) In complex coordinates, with z = x+ iy, 
we write the boundary as z = R([), where the complex function R has real and 
imaginary parts R([) = X([)+iY(s). The corresponding values of the velocity 
potential at the surface are given by $(X, Y) = @([). 

9 x x  + $YY = 0, 



Instability and breaking of a solitary wave 237 

The time evolution of R and d is then determined by the kinetic boundary 
condition 

- u = Vd’ DR 
Dt 
-- 

and the dynamic boundary condition (Bernoulli’s equation) 

At  the surface, the pressure p takes its constant atmospheric value, and it makes no 
difference to the motion if this value is defined as zero. Thus, provided that Vq5 can 
be evaluated, these equations supply all of the basic information required for 
progressively time stepping the fluid motion. 

The component of Vd tangential to the free surface can be calculated without 
difficulty since values of 9 are known along the free surface. The normal gradient is 
less straightforward to evaluate, but it is at this point that the properties of Laplace’s 
equation (2.1) can be exploited. We briefly show how the normal gradient of q5 can 
be calculated at the free surface. More detail is given in Dold & Peregrine (1986), who 
also indicate how (2.2) and (2.3) are extended to yield higher-order methods of time 
stepping. 

Because of Laplace’s equation (2.1), it  can be seen that the complex gradient of 4, 
defined as q = 4% - id,, is an analytic function of z. An alternative definition of the 
complex gradient of q5 at the surface is that 

where subscript 5 denotes differentiation with respect to 5, and q5, is the normal 
gradient of q5 scaled by IR,I, and * denotes the complex conjugate. Since q5, can be 
found simply by differentiating @(5), the problem reduces to that of solving for q5”. 

Also, in terms of q, the zero-vertical-velocity (impermeability) condition at the flat 
bottom can be expressed as Im(q) = 0. Alternatively, by notionally allowing the fluid 
to extend below y = - h, a reflection condition, 

q(R*-2ih) = q*(R) (2.5) 

can be imposed. Because q is an analytic function of z between the surface z = R(5) 
and its reflection z = R*(E)-2ih, the principal-value form of Cauchy’s integral 
equation can be applied, 

where the contour C consists of both the free surface and its reflection, and 
integration is performed over one anticlockwise circuit. Substituting the definition 
(2.4) for q gives, after some rearranging, 

where 5 is taken to vary from - 00 to + 00 as x varies from - 00 to + co, and the 
prime denotes evaluation at  z = R ( r ) .  
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Finally, by identifying 6 as a point-label parameter which, numerically, takes 
integral values, the following quadrature formula for (2.7) can be deduced: 

where 

For a solitary wave propagating in still water, the values of y and q rapidly approach 
zero as 1x1 increases. It is sufficient therefore to take the range of 6 such that $E 
becomes negligibly small a t  each end of the range. By solving iteratively for $,, the 
gradient V$ can be calculated, end the motion of the wave continued forward in time 
using (2.2) and (2.3). This method was used in the case of some of the calculations 
presented below. 

A variation on this approach, which was used in other cases, and found to produce 
equivalent results when the methods were compared, arises through imposing 
periodic boundary conditions as described in Dold & Peregrine (1986). Provided that 
the spatial period was chosen to be large enough for the 'solitary' wave to be 
bounded by appreciable regions of almost-uniform flow, the imposition of periodicity 
was found to produce no ill effects, 

Time stepping is effected by evaluating a short Taylor series in time for each of @, 
X and Y, together with one backward time difference. This permits fairly large time- 
step sizes for a required accuracy and reduces the CPU time by a great amount. 

A full account of this numerioal method is in preparation. 

2.2.  Initial data 
The steady solitary-wave solution and normal-mode perturbations are calculated by 
the method explained in detail in Tanaka (1986). In using these results to provide 
initial conditions for the fully time-dependent problem, redistribution of the mesh 
points is necessary. 

In Tanaka's method, mesh points are distributed along the free surface of the 
steady wave such that points are evenly spaced with respect to a variable y which 
is related to the velocity potential @ (measured in the frame of reference moving with 
the wave) by the relation 

@ 2 = ay+ym.  (2.10) 

Here, a is a small positive number and nz some positive odd integer. (In the present 
calculation we chose a = 0.05 and m = 5 . )  The fluid depth is given by h, and c is the 
velocity of propagation or phase speed of the wave relative to the fluid far from the 
wave. This distribution ensures a high density of mesh points around the steep crest 
where the good resolution is needed and low density in the region far from the crest 
where the wave varies very smoothly. 

Although this distribution was shown to be very efficient in calculating steady 
solutions and normal modes, it becomes unsuitable as the wave propagates. In the 
time-dependent problem the Lagrangian computational fluid particles generally 
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move in the direction of wave propagation much more slowly than the wave itself. 
This implies that the region of high point density is left behind as the wave proceeds 
into a region where the points are more sparsely distributed initially. This causes a 
serious loss of resolution, especially around the steep crest. 

In order to maintain a high resolution around the crest at all times, the original 
mesh points were redistributed using an 1 l-point polynomial interpolation formula. 
The new distribution was made such that the arclength As between any two adjacent 
points is proportional to the fluid speed /q1( = d@/ds), measured in the frame of 
reference moving with the wave. For the unperturbed steady wave, this distribution 
is ‘invariant’ in the sense that the initial distribution of mesh points is reproduced 
periodically on the time interval As/lql( = const.) (New 1983). 

3. Initial growth of perturbations 
The initial condition used for following the unstable evolution of a solitary wave 

is provided by y = H + q ,  
# = @+“(qT+Qj), 

where H and @ are the surface displacement and velocity potential, respectively, of 
a steady solitary wave propagating in still water; +j and 6 are the normal-mode 
perturbations to these quantities obtained by a linear stability calculation (Tanaka 
1986). The small parameter E is used to select the size of the initial perturbation. No 
generality is lost if we also normalize space and time so that the undisturbed fluid 
depth F, and the acceleration due to gravity g are set equal to 1. With this 
normalization the basic solitary wave that was chosen for this study has an 
amplitude a = 0.80374. The corresponding phase speed c of this wave is 1.29400. 

In order to study the growth of perturbations, we evaluated a perturbation 
integral or ‘energy of perturbation ’ defined by 

P(t) = {Y(z, t ) - H ( ~ - c t ) } ~ d ~ .  (3.2) 
2 -w 

Tested on the undisturbed wave up to time t = 10, when the wave has propagated 
about thirteen times the undisturbed depth, P(t) remains less than in value. 
(Note, for comparison, that for the wave under consideration $?a H2dx = 0.44900.) 
This extremely low value reflects the high accuracy with which the evolution of both 
disturbed and undisturbed waves can be calculated. 

According to the linear stability calculation, there are two normal-mode 
perturbations for the steady solitary wave under consideration besides the trivial 
mode corresponding to a phase shift. One mode grows like eAt while the other decays 
like e-” with h = 9.83 x 

It is worth mentioning here the significance of the sign of the parameter E. As 
shown in figure 1 the perturbation is not symmetric about x = 0, the initial position 
of the crest of the solitary wave. This implies that the perturbed wave has unequal 
slope on each side of the crest. Throughout this work we employ the convention that 
positive values of B always perturb the steady wave such that the rear face of the 
wave is steeper than the front face, while negative values have the opposite effect. 
Although the sign of B does not have any relevance to the linear theory, the long-time 
evolution of the perturbation is found to be completely different, as described in the 
next section. 
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FIGURE 1. Growing normal-mode perturbation +(z) for a solitary wave (shown beneath to 

natural scale) propagating from right to left. The decaying mode is given by -+( -z). 

Numerical calculations were performed for various values of lei ranging from 0.001 
to 0.01. For these values of E ,  the ratio r of the initial ‘energy’ of perturbation to that 
of the basic wave, defined as I_mm { ~ t w > 2 d x  

r(E) = F’ (3.3) 

varies from 6.75 x lo-’ to 6.75 x lop5. 
With E = +0.001, numerical results for the decaying mode are shown in figure 2 (a), 

and for the growing mode in figure 2 ( b ) .  The dashed lines show the linear stability 
predictions that the perturbation integral P(t)  should behave like 

(3.4) I exp ( - 2ht) (decaying mode), 
{p (o )  P(0)  exp ( +2ht) (growing mode). 

P(t) = 

The figures show good agreement between the results of the calculations and the 
predictions of the linear stability theory, providing an independent validation of the 
linear stability results. 

We also calculated the initial growth rate A,, defined by 

for various values of 8. The result, shown in figure 3, clearly indicates a convergence 
to the value expected from the linear stability theory as E + 0. 

While the deviation from the basic wave remains sufficiently small, the two cases 
for the growing mode, corresponding to e=+O.OOl and -0.001, both grow 
exponentially in time with almost the same growth rate, one slightly larger and one 
slightly smaller than predicted. However as time proceeds and the disturbances 
become larger, the growth rates diverge significantly. This more ‘nonlinear’ stage of 
the instability is discussed in the next section. 
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FIQURE 2. Development of the perturbation integral P(t )  for normal-mode perturbation with 
6 = 0.001 (lower curve) and 6 = -0.001 (upper curve). The dashed line gives the exponential decay 
predicted by linear stability theory. (a) Decaying mode, (a) growing mode. Analysis for this 
decaying mode was suggested by Professor M. S. Longuet-Higgins. 

0 0.005 0.01 
Id 

FIGURE 3. Initial growth rates A, for the growing mode with Is1 between 0.001 and 0.01, showing 
the tendency towards the prediction of linear stability theory as 8 --f 0. The error bars are estimated 
from overall numerical errors. For small Is!, as in figure 2, the points lie close to the straight dashed 
lines. 
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4. Long-time evolution 
In order to investigate the nonlinear stage of the instability, we calculated the 

evolution of the growing mode using the larger values for E of 0.01 and -0.01. As 
shown in figure 4, the behaviour is quite different for the two cases : we shall discuss 
them separately. 

4.1. Breaking case (8 = -0.01) 
The growth of the perturbation integral P(t)  is plotted only up to t = 8.5. Just after 
this time the wave showed signs of breaking (see figure 5 )  and the calculation could 
not be continued. The scale of the breaking region was found to be very small indeed 
and calculations failed when resolution of this region became inadequate. In figure 6 
we have plotted the evolution of the maximum slopes on either side of the wave. 
This shows that the front face of the wave which was initially only slightly steeper 
than the rear face gradually steepens further until an almost singular growth in 
maximum slope occurs. It may be noted that the timescale of the breaking event 
seems much shorter than the characteristic timescale of the basic wave, which might 
be defined as l / c  = 0.7728. 

Longuet-Higgins & Cokelet (1978) investigated the nonlinear stage of the 
subharmonic instability for periodic waves on deep water and found in the same way 
that the instability eventually leads to breaking. Solitary waves and periodic waves 
on deep water lie at opposite extremes of the family of steady waves. The 
wavelength-to-depth ratio is 00 for solitary waves and 0 for periodic waves on deep 
water. In spite of this great difference in the nature of the two cases, the local 
behaviour around the breaking crest shows some similarity. (Compare figure 5 of the 
present work and figures 15, 18 and 21 of Longuet-Higgins & Cokelet.) This fact 
supports their suggestion that the dynamics of the final stage of overturning are 
determined only by local conditions near the breaking crest. 

Figure 7 shows the evolution of the shape of the perturbation Q(z, t )  (=  y(z, t )  
- H ( z - c t ) ) .  It is evident that Q grows rapidly in a small region around the crest as 
the wave approaches overturning, and there are indications that this final stage of 
evolution occurs on a shorter timescale than the original growth of the perturbation. 

4.2. Non-breaking case (E = +0.01) 
Before we started this calculation, we naively believed that the growth of the 
unstable normal mode would always enhance the asymmetry of the perturbed wave 
and finally lead to breaking or some other drastic event. As discussed above this does 
happen for E = -0.01, but does not always happen. 

In figure 8 we show the profile of the wave at t = 100 for the case E = +0.01. The 
normal mode that was superimposed on the steady solution is exactly the same as 
that used in the breaking case, the only difference being in the sign of E. The evolution 
of the shape of the perturbation Q(x, t )  and the maximum height a(t) of the wave are 
shown in figures 9 and 10, respectively. 

For this case the growth of the perturbation unexpectedly reduces the amplitude 
of the wave. The wave profile becomes more gentle as the perturbation grows. The 
asymmetry in the initial condition does not grow as it does for the breaking case and 
the wave remains almost symmetric throughout the evolution. The profile at t = 100 
has been compared with that of the steady solitary wave of the same height ; the two 
waves are graphically indistinguishable. 

Bearing in mind that the initial perturbation integral P(0) is less than 0.007 Yo of 
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FIGURE 4. Curves as in figure 2 with E = 0.01 (lower curve) and E = -0.01 (upper curve). The 
upper branch leads to breaking at about t = 8.9. 

X 

FIGURE 6. Overturning of the breaking wave crest ( E  = -0.01). Profiles are shown at times 
t = 8.5, 8.6, 8.7, 8.8 and 8.9. 

the energy of the basic wave, it is surprising that the sign of the normal mode makes 
such a great difference to the long-time evolution of the instability. I 

The behaviour of the amplitude a(t) shown in figure 10 suggests that the amplitude 
is exponentially approaching an asymptotic value. In  order to estimate this value we 
applied one Shanks transformation to a(t) defined by 

a(t + At)a(t - At) -a2(t) 
S(a( t ) )  = a(t + At) + a(t - At) - 2a(t) * 
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FIGURE 6. Maximum positive and negative slopes for the breaking case ( E  = -0.01), showing 
the rapid increase in slope of the front face through overturning. 
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F’IQURE 7. Development of the perturbation y-H for the breaking case (6 = -0.01) at times 
t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 8.4 and 8.8. The dashed lines are the paths of maxima and minima 
as predicted by linear stability theory. 

1.2 - 

- 135 - I30 - 125 
X 

FIGURE 8. Profile of free surface a t  t = 100 for the non-breaking case ( E  = 0.01). The dashed line 
is the unperturbed case. 
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FIGURE 9. Curves aa in figure 7 for the non-breaking case ( E  = 0.01) at times t = 0, 1, 2, 3, 4, 5, 
6, 7, 8, 9 and 10. 
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FIGURE 10. Evolution of the maximum height a(t) of the wave for the non-breaking caae 
( E  = 0.01). 

The result is shown in figure 11. Since the steady wave that we are employing as the 
basic wave is steeper than waves with the maximum of the total energy, total 
momentum (impulse) and excess mass, other steady solitary-wave solutions exist 
with exactly the same amounts of each of these quantities but with smaller 
amplitudes. We denote the amplitudes corresponding to the same amounts of 
energy, momentum and mass (as the initial perturbed solitary wave) by a",, a"$ and 
a",, respectively. (The values for the case studied are a", = 0.7539, a", = 0.6938 and 
a", =0.6562.) The result in figure 11 clearly shows that the wave evolution 
approaches the steady solitary wave with very nearly the same amount of total 
energy aa the initial perturbed solitary wave. 

There is an increase in magnitude of both the mass and momentum of the solitary 
wave. This is accounted for by the emission of two long waves. One is a radiated wave 
travelling in the opposite direction to the solitary wave. The other is a 'trailing' 
wave, following the solitary wave at nearly the linear wave speed. Despite the length 
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FIQURE 11. Estimated final height S(a) of the emerging solitary wave (using Shanks transformation 
(4.1) with At = 2) compared with the wave heights for equivalent energy Ge, impulse G$ and 
mms d,. 

x+t  

(4 

-0.001 

-0.002 

X - 1  

WQURE 12. Elevation of (a) the trailing wave, (b) the radiated wave. For the radiated wave 
individual sections are shown to show those portions ‘contaminated’ by dispersive waves. 
Exponentials with exponents as in (4.6) are shown by dotted lines. 

of the computational region having been limited to 53 times the depth these waves 
can be identified. Linear theory is used to build up sections of each wave from output 
at selected times. The surface elevation and horizontal velocity inserted into 
d’slembert’s solution for the linear long-wave equations give the trailing wave 
shown in figure 12(a). To define the radiated wave it is also necessary to  subtract 
weak dispersive effects of the trailing wave. Note the very different vertical and 
horizontal lengthscales of the two waves. 

The figure 12 (b) for the radiated wave shows individual sections, since they give 
a clear idea of the accuracy of the results. For (2 - t )  > -30 the wave is masked by 
strong dispersive effects from short waves associated with the initial growth of the 
instability. The poor resolution of the radiated wave for ( 2 - t )  < -240 is due to the 
propagation of numerical errors caused when the peak of the trailing wave leaves the 
computational region. Only a simple truncation is used as the region is moved. 
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The wave profiles in figure 12 allow a check to be made on conservation of mass 
and momentum. The uncertainties in the radiated wave only allow measurement to 
the third decimal place. Mass and momentum are conserved to this accuracy, which 
corresponds to about 3% of the difference between the initial and final solitary 
waves. 

Since the final solitary wave is stable, it might be thought that the observed 
exponential approach to the lower-amplitude solitary wave contradicts the findings 
of linear stability analysis. For t greater than about 60, we find that the wave profile 
evolves in the manner 

as t - too,  where I? is the surface elevation of the final solitary wave, and a! is a 
normal-mode perturbation. For ‘stable ’ solitary waves, linear stability analyses 
have shown that no real growth/decay eigenvalue A can exist for any disturbance 
function G which is finite in extent; that is a!(@ tends to zero as 6’j-f 00. 

However, it is clear that as t -too the disturbance function a! that emerges from the 
numerical calculation we have performed does not necessarily tend to zero aa 
6’ +. + 00 . If this condition for is dropped, then for large values of x + Et the profile 
in (4.2) must match with linear wave solutions of the form 

y(x,t) - I?(x+Et)+e-*tG(~+Ft) (4.2) 

Yk’ t )  - r],(x+c, t )  + r],(x--C,t), (4.3) 

representing negatively and positively propagating disturbances with linear phase 
speeds c1 and c2. Matching of this with (4.2) for large values of x+Et (where H can be 
neglected) is only possble if v1 and 7, are exponential functions, giving 

e-At G(x + Ft) rv A &z+C,t)l(E-CJ + B eA(z-cd)/(Z+CJ ( 4 . 4 ~ )  

or + Ft) A eA\(z+EO/(E-C 1) + B eA(Z+Et)/(E+C*) (4.4b) 

as x + Et + 00 with x + cl t or x - c2 t fixed. Such unbounded behaviour for a! (with A 
and B non-zero) is fully consistent with the evolution in (4.2), even for stable solitary 
waves. It may be noted that this argument would not be applicable to periodic 
waves. 

Results for the time decay of amplitude, shown in figure 10, give the value 
A-’ = 19.2k0.5 for the decay rate. The exponential corresponding to this decay 
rate is shown dashed in figure 10. The linear dispersion relation applied to 7, and q2, 
as given in (4.4a), requires that c1 and c2 satisfy 

A , c: = tan -. F- C1 A 
c; = - tan - 

A c- C1 F+ c, (4.5) 

This leads to the values c1 = 1.0056 f 3 and c2 = 1.000086 f 4. The coefficients of the 
exponential growth rates with x of the trailing and radiated waves are therefore 

1 -- -- 1 A 
F - C ,  5.47f0.15’ F+c, 4 4 f l ’  
-- - A 

Exponentials with these predicted coefficients are shown dotted in figure 12. The 
correspondence with the calculated trailing- and radiated-wave profiles is as good as 
can be expected from the accuracy of the calculations. 

5. Conclusions 
By applying the very efficient numerical method that has recently been developed 

by Dold & Peregrine, we have investigated the instability of a solitary wave on a fluid 
layer of constant depth. 
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The results of the linear stability calculation (Tanaka 1986) has been confirmed by 
evaluating the rate of growth of sufficiently small normal-mode perturbations. 

In the nonlinear stage of the instability, two distinctive forms of evolution were 
found depending on the sign of the unstable normal-mode perturbation superimposed 
on the basic steady solution. In one case the instability leads directly to breaking as 
was expected. In the other case the growth of the perturbation leads to a monotonic 
decrease in the amplitude of the wave and the main part of the wave finally evolves 
into a new steady solitary wave which has almost the same amount of energy as the 
initial wave. 

In the calculation shown above, the ‘energy’ of the initial perturbation relative 
to that of the steady wave was about 0.007%. As a result the difference between 
these two types of evolution becomes significant within a reasonable time. It is 
certain however that the two distinct forms of evolution would eventually be 
observed even for very small initial perturbations. Thus the nonlinear evolution of 
the system is discontinuously dependent on initial conditions. A very small change 
could completely alter the evolution of the system. Although sensitive dependence 
on initial conditions is not unusual in nonlinear systems, it may have important 
implications for our ability to predict whether or not a given unstable solitary wave 
will eventually break. 

M. Tanaka thanks all the staff of School of Mathematics, University of Bristol for 
their hospitality. He also acknowledges the support from a UK Science and 
Engineering Research Council Visiting Fellowship which made his stay in Bristol 
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